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Algorithmical Unsolvability of the Ergodicity Problem
for Locally Interacting Processes with
Continuous Time
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We prove algorithmical unsolvability of the ergodicity problem for a class of
one-dimensional translation-invariant random processes with local interaction
with continuous time, also known as interacting particle systems. The set of
states of every component is finite, the interaction occurs only between nearest
neighbors, only one particle can change its state at a time and all rates are 0
or 1.
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The theory of locally interacting particle systems or systems for short, as
defined for the continuous time case in Liggett's well-known monograph, (1)

has been developing roughly for thirty years, but the only results about
algorithmical unsolvability of any problem related to them published till
now pertain to the discrete time case. This note presents a proof of
algorithmical unsolvability of the ergodicity problem for a class of systems
with continuous time. Actually we apply the method first proposed by
Kurdyumov for the discrete time case [2, 3, 4, Chap. 14] to a class of
systems with continuous time with minimal necessary changes. In fact we
build continuous-time systems that imitate functioning of discrete-time
ones in the well-known spirit represented, e.g., by ref. 5.

Our proof is by contradiction. For every Turing Machine M of a large
enough class we construct a system, belonging to our class, which is
ergodic if and only if M stops. Thus existence of an algorithm to decide
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which systems of our class are ergodic implies decidability of the halting
problem for Turing machines, which is well-known to be false. Since the
results about algorithmical unsolvability are the stronger the more narrow
is the class of objects, the arbitrary finite set S of states of every component
is the only source of infiniteness of our class of systems, everything else is
minimized: the interaction occurs only between nearest neighbors, only one
particle can change its state at a time and all rates are 0 or 1.

The configuration space of a generic system of our class is SZ, where
S is a non-empty finite set and Z is the set of integer numbers. Thus a con-
figuration is a sequence ..., x&1 , x0 , x1 ,..., infinite in both directions, where
xi # S is interpreted as the state of the ith particle, i # Z. A particle's rate
of change depends only on this particle's state and the state of at most one
of its nearest neighbors. Thus, for all x, y, z # S, where x{ y, there are rates
Rleft(x | y, z), Rright(x | y, z) and Rcenter(x | y), all of which equal 0 or 1.
During a small time 2t three kinds of events may happen: (a) the i th
particle changes its state from y to x with a probability Rleft(x | y, z) } 2t+
o(2t) if the (i&1)th particle is in the state z, (b) the i th particle changes
its state from y to x with a probability Rright(x | y, z) } 2t+o(2t) if the
(i+1)th particle is in the state z and c) the i th particle changes its state
from y to z with a probability Rcenter(x | y) } 2t+o(2t). (The latter case is
redundant, but convenient.)

Every process of this class has at least one invariant measure and is
called ergodic if, starting from any initial measure, it tends to one and the
same invariant measure. Of course, speaking about our class of processes,
set of Turing machines and other classes of objects, we assume whenever
necessary that each of them is enumerated in some constructive way. The
following is out main result.

Theorem. There is no algorithm to decide for all the processes of
this class, which of them are ergodic and which are not.

To prove our theorem we shall use the following set of Turing
machines. Each machine has one head and one tape, which is infinite in
both directions. To describe a generic Turing machine, we need [g0 ,..., gp],
the set of tape symbols and [h0 ,..., hq , stop], the set of head states, and
three functions:

Ftape : [g0 ,..., gp]_[h0 ,..., hq] � [g1 ,..., gp]

Fhead : [g0 ,..., gp]_[h0 ,..., hq] � [h1 ,..., hq , stop]

Fmove : [g0 ,..., gp]_[h0 ,..., hq] � [&1, 0, 1]
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When the machine starts, the head is in the initial state h0 and all cells of
the tape are filled with the initial symbol g0 . At every step the head
simultaneously writes into that cell of the tape, where it is, a new symbol
according to the function Ftape , goes to a new state according to the func-
tion Fhead , and moves one cell left or does not move or moves one cell right
along the tape according to the values &1, 0, 1 of the function Fmove

respectively, the arguments of all the three functions being the symbol in
the presently observed cell of the tape and the present state of the head.
The machine stops when and if the head reaches the state stop. It is well-
known that the problem of deciding for all of these machines, which of
them ever stop, is algorithmically unsolvable.

Now for any Turing machine M of this class we shall construct a
process belonging to our class. We set

S=S left_Sright_Sage_Stape_Shead (1)

where

Sleft=Sright=[0, 1], Sage=[&1, 0, 1],

Stape=[g0 ,..., gp], Shead=[0, h0 ,..., hq , stop].

Accordingly, we write a generic element of S as

x=(left(x), right(x), age(x), tape(x), head(x)). (2)

We say that a state x and a particle in this state has a left bracket if
left(x)=1 and that it has a right bracket if right(x)=1. We call x a no-
head if head(x)=0 and a head otherwise. We call a head x an adult if
age(x)=0 and a child otherwise. We call an adult x a stop-adult if
head(x)=stop. A child x is either a left-child if age(x)=&1 or a right-child
if age(x)=1. We say that an adult x wants to move left, to stay or to move
right when Fmove(tape(x), head(x)) equals &1, 0 or 1 respectively. The state
(0, 0, 0, g0 , stop) is called final.

Our proof is based on the following ideas. The functioning of our
system is similar to simultaneous functioning of many representations of
the head of the original Turing machine M on one and the same tape and
along with defining our rates we shall explain how they imitate this func-
tioning. Since only one particle can change its state at a time, a representa-
tion of the head of M in our system cannot just jump from one site to
another. That is why we need heads of three types: adult, left-child and
right-child. A generic configuration of our system contains infinitely many
representations of the head of M, which evolve in time imitating its
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functioning. Each representation occupies one site or two adjacent sites.
Each representation belongs to its area, which is a segment of Z filled with
tape symbols written by this representation. It is important that no repre-
sentation ever reads a symbol written by another representation.

Now let us define our rates by listing those cases when they equal 1.
These cases are called flips, enumerated and commented. In all the other
cases our rates are zeros. Some flips come in symmetric pairs, each pair
consisting of the left and right version. We formulate only one version in
each pair, the other version to be obtained from the given one by permut-
ing left and right. Thus the only changes to occur are the following ones
and their symmetric versions. All the definitions of flips assume that x{ y.
All of them except flips 7, 8-left and 8-right assume that none of x, y, z is
a final and none of y, z is a stop-adult.

Flip 1. Suppose that x=(1, 1, 0, g0 , h0). Then Rcenter(x | y)=1.
Comment: An adult in the initial state with the initial tape symbol and both
brackets is born. Thus the state (1, 1, , g0 , h0), which imitates the initial
state of M, can appear anywhere with the exceptions specified above.

As soon as the initial state of M is created, it needs to function, and
this is imitated in our system by flips 2�6.

Flip 2. Suppose that

x=(left( y), right( y), 0, Ftape(tape( y), head( y)), Fhead(tape( y), head( y)))

and y is an adult, which wants to stay. Then Rcenter(x | y)=1. Comment: If
an adult wants to stay, it simultaneously updates the tape symbol and head
state.

The following flips imitate the movements of the head of M.

Flip 3-left. Suppose that

x=(0, 1, 1, g0 , Fhead(tape(z), head(z)))

and z is an adult, which wants to move right and has a right bracket. Then
Rleft(x | y, z)=1. Comment: If an adult wants to move right and has a right
bracket, then a right-child is created on its right side with these initial tape
symbol, with head state determined by the function Fhead , with right
bracket and without left bracket.

Flip 4-left. Suppose that

x=(0, right( y), 1, tape( y), Fhead(tape(z), head(z))),
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that y has no left bracket and z is an adult, which wants to move right and
has no right bracket. Then Rleft(x | y, z)=1. Comment: If an adult wants to
move right and has no right bracket and its right neighbor has no left
bracket, then a right-child is created there, with head state determined by
the function Fhead , but the tape symbol and brackets do not change there.

Let us explain the difference between flips 3-left and 4-left. Both start
the sequence of flips imitating one move of the head of M in the right direc-
tion. If our adult z is at the right end of its area, which is recognized by
its having a right bracket, flip 3-left may occur, otherwise flip 4-left may
occur. If flip 3-left occurs, the site on its right side gets included into its
area, and excluded from another area if it belonged there. If flip 4-left
occurs, no area is changed.

Flip 5-right. Suppose that

x=(left( y), 0, 0, Ftape(tape( y), head( y)), 0)),

that y is an adult, which wants to move right, that z is a right-child, which
has no left bracket and that head(z)=Fhead(tape( y), head( y)). Then
Rright(x | y, z)=1. Comment: If an adult has a right-child on its right side,
it dies, its right bracket (if present) disappears and the tape symbol is
updated. Flip 5-right is the second flip in the sequence imitating one move
of the head of M. It may occur when an adult has created a right-child on
the right side of it and must die to let it become adult.

However, flip 5-right may occur in a different situation also, namely
when that adult which created this right-child has been replaced by another
adult of a different representation (e.g., a new-born). In this case a right-
child ``by mistake'' kills an adult which is not its father. However, this may
happen only if the adult being killed has a right bracket and wants to move
right and to create exactly the same right-child. In this case we classify the
child as belonging to the same representation as that adult which is being
killed.

Flip 6-left. Suppose that x coincides with y except age(x)=0 and
age( y)=1. Suppose also that z is not a head. Then Rleft(x | y, z)=1.
Comment: If a right-child sees no head on its left side, it becomes adult.

Thus one move of the head of M in the right direction is imitated by
a sequence of three flips: first either flip 3-left or flip 4-left, second flip
5-right, and third flip 6-left. One move of the head of M in the left direction
is imitated in a symmetric way.

Flip 7. Suppose that x is final and y is a non-final stop-adult. Then
Rcenter(x | y)=1.
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Flip 8-left. Suppose that x and z are final. Then Rleft(x | y, z)=1.
Comment: The flip 7 assures that as soon as some head reaches a stop-
adult state, it turns into the final state, which expands in both directions
due to flips 8-left and 8-right.

Our process is defined. Our theorem immediately follows from the fact
that this process is ergodic if and only if M stops. To prove this, let us
denote $final the measure concentrated in the configuration ``all the particles
are in the final state.'' Since $final is invariant, our process is ergodic if and
only if it tends to $final from any initial configuration. Thus it is sufficient
to argue in the following two directions.

One Direction. Suppose that M stops. Then for any initial configura-
tion the following scenario is possible: First, an adult is born due to flip 1
and no other flip 1 occurs in a large enough vicinity during long enough
time. As time goes on, this representation of the head of M evolves due to
flips 2�6. Since M stops, this functioning eventually produces a stop-adult.
Due to flips 7, 8-left and 8-right this stop-adult turns into the final state,
which expands in both directions, whereby the measure tends to $final .
Since the probability of this scenario to happen at any particular region is
positive, it happens somewhere almost sure.

The Other Direction. Let us assume that M never stops, take the
initial configuration ``all particles are in the initial state,'' where the initial
state is (0, 0, 0, g0 , 0), and prove that the probability of a particle to be in
tide final state remains zero all the time. Let us denote x(s, t) # S the state
of the sth particle at time t. Let us assume that x(s0 , t0)= final with a
positive probability and come to a contradiction. For this purpose we cover
the event x(s0 , t0)= final by a countable set of events (except a set of zero
measure) and prove that everyone of them contradicts out assumption.
First we go back from the point (s0 , t0) and in result represent our event
as a consequence of a finite configuration of flips. By the way we recognize
all the flips (i.e., their numbers and left-rightness) of that configuration. In
particular, we always can distinguish flip 1 from other numbers due to the
fact that Ftape( } ) never equals g0 and Fhead( } ) never equals h0 .

Then starting from t=0 and increasing t, we can distinguish by induc-
tion, which heads correspond to one and the same representation of the
head of M. Also by induction we can distinguish this representation's area,
that is the set of those sites, which have tape symbols ever written by it.
Also we prove by induction that at any time this area includes exactly one
or two heads, namely an adult or a child or an adult and a child generated
by it and stretches from them to the left until there is a left bracket
inclusively or a right bracket exclusively. In the right direction it stretches
according to a symmetric rule.
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Our flips are defined in such a way that no representation ever reads
a symbol written by another one. In particular, when flip 3-left creates a
right-child, its tape symbol becomes initial, so that the former symbol is
forgotten. Flip 4-left allows an adult to create a right-child only on condi-
tion that that place had no left bracket, which means that it already
belonged to the area of that adult. Thus we can prove by induction that for
any area and any time the configuration at that area at that time coincides
with the configuration on some part of the tape in the process of function-
ing of M. Therefore the head states that ever appear in our process with
positive probabilities are only those which appear in the course of function-
ing of M. Since M never stops, these states do not include stop. Thus we
get the contradiction we sought.
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